

D.K. Zabolotny Insitute of Microbiology and Virology of the National Academy of Sciences

LIPOPOLYSACCHARIDES OF PANTOEA AGGLOMERANS P1a, P324 AND 8488: BIOLOGICAL PROPERTIES, THE O-SPECIFIC POLYSACCHARIDES AND LIPIDS A STRUCTURE

Ph.D. Tetiana V. Bulyhina

Department of Biochemistry of microorganisms

Leader: Dr. B.Sc., prof. Liudmyla D. Varbanets

lipid A.

Carbohydrate Research Volume 449, 8 September 2017, Pages 32-36

Structure of the O-specific polysaccharide chain of the lipopolysaccharide of Enterobacter agglomerans

Yannis Karamanos *, 1, Ossarath Kol *, Jean-Michel uszeski *, Gérard Strecker *, Bernard Fournet 🙉 René Zalisz b

The OPS isolated from the LPS of E. agglomerans was found to have the pentasaccharide repeating-unit:

 $\{\rightarrow 3\}$ - α -L-Fuc pNAc- $(1\rightarrow 3)$ - α -L-FucpNAc- $(1\rightarrow 3)$ - $[\alpha$ -D-Glcp- $(1\rightarrow$ 2)-α-L-Rhap-(1 \rightarrow 6)-β-D-GlcpNAc- $(1 \rightarrow)$.

Characterization of the O-antigen polysaccharide derived from Pantoea agglomerans IG1 lipopolysaccharide

Masahito Hashimoto 8 A B, Rune Satou 8, Mami Oz Hiroyuki Inagawa 5, 4 d, Gen-Ichiro Soma 5, 4 d

The polysaccharide is composed of linear tetrasaccharide repeating units, consisting of glucose and rhamnose, where 40% of one of the rhamnose residues is substituted with glucose:

$$\rightarrow$$
2)- α -L-Rha p -(1 \rightarrow 6)- α -D-Glc p -(1 \rightarrow 2)-[β -D-Glc p -(1 \rightarrow 3)]_{0.4}- α -L-Rha p -(1 \rightarrow 2)- α -L-Rha p -(1 \rightarrow

Carbohydrate Research

Volume 343, Issue 2, 4 February 2008, Pages 392-396

The structure of the O-specific polysaccharide of the lipopolysaccharide from Pantoea agglomerans strain FL1

A neutral OPS consisting of d-rhamnose was obtained of the LPS of the Pantoea agglomerans strain FL1. The chemical repeating unit of the polymer identified as a linear tetrasaccharide of the structure: \rightarrow 2)- α -D-Rha ρ -(1 \rightarrow 2)- β -D-Rhap-(1 \rightarrow 3)- α -D-Rhap-(1 \rightarrow 2) Rha*p*-(1→

Alessio Cimmino 4, 5, Guido Marchi b, Giuseppe Surico b, Anna Hanuszkiewicz 5, Antonio Evidente 4, Otto Holst CA 四

The **aim** of the present work was isolation, chemical characterization, and studies of functional and biological activities of the *P. agglomerans* P1a, P324 and 8488 LPS, as well as elucidation of the O-specific polysaccharides (OPS) and lipid A structure of this strains.

Isolation,
purification and
chemical
identification
(monosaccharid
e and fatty acid
composition) of
P. agglomerans
LPSs

Investigation the sensitivity of bacteria to polymyxin B Study the biological properties of LPS (toxicity, pyrogenicity, adhesion)

Investigation of LPS functional activity (antigenicity)

Identification the structure of the OPS and lipid A LPSs

Pantoea agglomerans P1a, P324 were isolated from wheat (Kherson region, Ukraine) and 8488 - from oat (Romania). The cultures were obtaining from the collection of phytopathogenic bacteria.

Chemical composition of the studied LPS

Monosaccharide and fatty acid composition of ⁶ *P. agglomerans* P1a, P324 and 8488 LPSs.

Components	% of the total sum of peak areas		
	P1a	8488	P324
Monosaccharide			
Man	22.05	30.9	-
Fuc	4.53	25.9	29.0
Rha	45.8	21.9	13.0
Glu	14.13	12.8	41.2
Gal	9.17	2.9	4.6
Rib	-	2.8	25.2
Нер	4.32	2.8	12.3
Fatty acid			
C12:0	14.73	31.5	15.0
C13:0	-	-	2.2
2(OH)C14:0	-	3.8	-
3(OH)C14:0	53.1	34.9	38.93
C14:0	-	12.9	21.6
C16:1	14.9	-	8.74
C16:0	17.27	16.9	4.63
cisC18:1	-	-	3.0
transC18:1	-	-	3.4
C18:0	-	-	2.5

Determination of the sensitivity of the microbial culture to polymyxin B

Part of mass spectrum of *P. agglomerans* lipid A.

Structure of *P. agglomerans* P1a, P324 and 8488 lipids A

Types of *Pantoea agglomerans* lipid A structures

P₁a

P324

8488

1)Hexaacyl

4 residues 3(OH)C14:0 2 residues C12:0

1)Hexaacyl

4 residues 3(OH)C14:0 1 residue C12:0 1 residue C18:0

1)Hexaacyl

4 residues 3(OH)C14:0 1 residues C14:0

1 residues C12:0

2) Tetracyl

3 residues 3(OH)C14:0 1 residues C12:0

2) Tetracyl

3 residues 3(OH)C14:0 1 residue C12:0

2) Pentaacyl

3 residues 3(OH)C14:0 1 residue C12:0

1 residue C14:1

3) Tetracyl

3 residues 3(OH)C14:0 1 residue C12:0

4) Triacyl

2 residues 3(OH)C14:0 1 residue C12:0

Toxicity of *Pantoea agglomerans* P1a, P324, 8488 and *E.coli* L19,O55:B5 LPSs

Pyrogenicity of *Pantoea agglomerans* P1a, P324 and 8488 LPSs

OPS structures *P. agglomerans* P1a (a), P324 (b) and 8488 (c)

$$\rightarrow$$
3)- α - D -Man p -(1 \rightarrow 4)- β - D -Fuc p -(1 \rightarrow 4)- α - D -Fuc p -(1 \rightarrow 4)- α - D -

$$\rightarrow$$
3)- α - L -Rha p -(1 \rightarrow 4)- α - D -Glc p -(1 \rightarrow (b)

$$\rightarrow$$
3)- α -L-Rha p -(1 \rightarrow 6)- α -D-Man p -(1 \rightarrow 3)- α -L-Fuc p -(1 \rightarrow 3)- β -D-GlcNAc p -(1 \rightarrow (c)

The reaction of double immunodiffusion in agar by Ouchterlony with O-antiserum against *P. agglomerans* P1a, P324 and 8488 with LPSs from other *P. agglomerans* strains

LPS from *P. agglomerans* 7960a (1), 7969 (2), 8456 (3), 8488 (4), 8490 (5), 8606 (6), 8674 (7) Π1a (8), Π324 (9), 7406 (10), 7604 (11), 9637 (12), 9649 (13), 9668(14).

0

Conclusions

- 1. Lipopolysaccharides of *P. agglomerans* P1a, P324 and 8488 were purified and chemically characterized. The investigated LPSs were heterogeneous in both monosaccharide and fatty acid composition.
- 2. The assumption on the absence of 4-amino-4-deoxy-L-arabinose as a substitute in lipids A of *P. agglomerans* P1a, P324 and 8488 LPSs, based on the data of bacterial sensitivity to polymyxin, was confirmed by HR ESI mass spectrometry lipids A in which were not identified any substitutes in the position of the C-4' glucosamine. Lipid A samples were found to be represented by hexa-, penta-, tetra-and tri-acylated species.
- 3. The LPS of tested strains showed a relatively low level of the toxic activity compared with other representatives of *Enterobacteriaceae* family. Assay of pyrogenicity showed that the LPSs of *P. agglomerans* P1a and 8488 were not pyrogenic. While LPS of *P. agglomerans* P324 was more pyrogenic than the pharmaceutical preparation «pyrogenal».

- 4. The OPS of three *P. agglomerans* P1a, P324 and 8488 strains are represented by linear tri-, di- and tetrasaccharide repeating units, respectively.
- 5. O-antiserum against *P. agglomerans* P1a, P324 and 8488 didn't showed cross-reactivity with the LPSs of these strains. The O-antiserum against *P. agglomerans* P1a indicates a serological cross-reaction only with LPS of *P. agglomerans* 9649. At the same time, O-antiserum against *P. agglomerans* 8488 exerted a serological cross-reactivity with the LPS of two other *P. agglomerans* 7969 and 8490 strains. These data testify that these strains contain common antigenic determinants in the OPS of their LPS, that is, they belong to one of the same serogroup.
- 6. The structural and serological data indicate immunochemical heterogeneity of *P. agglomerans* strains and may be used in creation of serological classification schemes of *P. agglomerans* strains.

