Thermodynamic Prognosis to Search for Super Resistant to Cu(II) Microorganisms as the Basis for Environmental Biotechnology

O. A. Havryliuk, V. M. Hovorukha., O. B. Tashyrev

Background

Environmental Pollution by Copper

Copper mines as a sources of toxic copper compounds contamination

Environmental Pollution by Copper

Outline of The Presentation

The characterization of theoretically positions of thermodynamic prognosis of the interaction of microorganisms with copper(II) compounds;

The experimental confirmation of capability of microorganisms to grow at the presence of Cu(II) at high concentrations (up to 1.0 M);

Genome sequencing and identification of super resistant to Cu(II) microorganisms;

The experimental confirmation of mechanisms of microbial interaction with Cu(II);

The specific copper resistant genes screening in genomes of isolated strains.

Thermodynamic Prognosis of Microbial Interaction with Cu(II)

Changing the RedOx Potential in The Range of Concentration of Cu(II) from 1·10⁻⁸ to 1.0 M/L

The value of the standard redox potential Cu^{2+} ($\text{E}_{_0}$ ') is located in the zone of thermodynamic stability of water (from - 414 to + 814 mV) in the range of concentrations from 1·10⁻⁸ to 1,0 M/L

Stereochemical analogy of Toxic Metals and Macroelements

Stereochemical analogy - proximity or equality of ion radii

Ion radii of Mg²⁺ and Cu²⁺ is about 0,075 nm Microbial transport systems are mistaken and "capture" toxic metals together with macroelements

Macroelements

Ion Radii, nm

Microorganisms Interaction with Cu²⁺

10

Grows and Interaction of *Pseudomonas panacis* with Cu²⁺ at concentration of 1M\L

Liquid Media

Accumulation of Cu²⁺inside colonies

Isolation of Cu²⁺ resistant Strains

Identification of Super Resistant to Copper(II) Microorganisms

11

MPC $[Cu^{2+}] = 63 546 \text{ ppm} = 1 \text{ M/L}$

Identification of Super Resistant to Copper(II) Antarctic Yeast Strain

MPC $[Cu^{2+}] = 63546 \text{ ppm} = 1 \text{ M/L}$

Metabolic characteristic for identification Rhodotorula mucilaginosa UKR5 prepared with the help of Ph.D. Olga Yaneva

Carbon source						
Saccharose	Glucose	Ramnos	Maltose	Lactose	Galactose	Raffinose
+	-	-	+	-	+	+
Carbon source						
Ribit	Glycerol	Ethanol	Inulin	Sodium	Me-	N-acetyl- D-
				gluconate	glycoside	glucosamine
-	+	+	-	+	-	-
Carbon source						
Citric acid	Xylitol	D- Glucosa mine	Lactic acid	Hexade- cane	Glucono- lactone	Glucuronic acid
+	+	-	+	-	+	-

+ presence of growth

- absence of growth

13

The growth and interaction of isolated super resistant strains with toxic Cu(II)

14

Accumulation of Copper (1000 ppm Cu²⁺) Due to Stereochemical Analogy with Mg²⁺ by Rhodotorula mucilaginosa UKR5

The Screening of Specific Copper Resistant Proteins in Genomes of Isolated *Pseudomonas* Strains

Copper binding protein (periplasmic multicopper oxidase) uses ATP to pump Cu⁺ and Cu ²⁺ across cell membranes.

Outer membrane protein or P-type ATPase is exhibite high copper transport activity. CopB exports Cu⁺ and Cu²⁺ from the cytoplasm.

Internal membrane protein executes copper uptake to the periplasm.

Chaperone that serves for the intracellular sequestration and transport of Cu²⁺. Delivers Cu²⁺to the coppertransporting ATPase CopA.

Chromosomal two-component genes system that encode proteins homologous to known metal ion antiporters and maintain intracellular copper levels within a safe range

The Removing of Soluble Cu²⁺ During Hydrogen Fermentation of Multicomponent Food Waste

Conclusions

- 1. The key points of the thermodynamic prognosis of the interaction of microorganisms with copper compounds were experimentally confirmed.
- 2. The isolated strains cultivated at the presence of Cu(II) at its super high concentrations (5 000 ppm ... 63 546 ppm Cu^{2+}), interacted with Cu(II) compounds accumulated in cells and reduced to insoluble Cu_2O by microorganisms as well as precipitated to insoluble compounds.
- 3. Thermodynamic justified pathways of microbial interaction with Cu(II) were confirmed by initial screening for genes encoding copper resistance mechanisms. Genome of all isolated *Pseudomonas* strains contains copper resistance proteins CopA, CopB, CopD, CopZ, as well as two component regulatory system CusRS.
- 4. The confirmed mechanisms of microbial interaction with Cu(II) are promising for development biotechnologies of super concentrated copper-containing wastewater purification and bioremediation of copper-contaminated ecosystems.

