EXTRA AND INTERCELLULAR SYNTHESIS OF SELENIUM NANOPARTICLES USING PROBIOTIC BACTERIA <u>TYMOSHOK ON.¹</u>, DEMCHENKO O.A.¹, KHARCHUK M.S.¹, BITYUTKYI V.S.², TSEKHMISTRENKO S.I.², PAVLUK T.V..¹ D. K. Zabolotny Institute of Microbiology and Virology of the NAS Ukraine, Bila Tserkya National Agrarian University <u>N Timoshok@ukr.net</u>

THE ABILITY TO REDUCE SELENITE EXTRACELLULAR INTO SELENIUM NANOPARTICLES (Nano-Se) WAS DEMONSTRATED IN SELECTED B. SUBTILIS IMVB B-7393, IMVB B-7392 AND BACILLUS CLAUSII STRAINS. TRANSFORMATION NA2SEO3 WITH INTRACELLULAR NANO-SE SYNTHESIS WERE PRESENTED IN L. CASEI IMV B B-7280 AND L. PLANTARUM IMVB B-7679

Fig. I. II.. Transmission microscopy (TEM) of L. casei IMV B-7280 and L.plantarum B-7679 formation of nanoselenium (Nano-Se) during Na2SeO3 transformation. I.1 and II.1. cell control. Intracellular synthesis of Nano-Se by strains B-7280 (I.4) and B-7679 (II.2). Nano-Se particles, which were formed during the cultivation of cells of strain B-7280 (I.2; I.3) and B-7679 (II.3; II 4) in MRS medium with the addition of sodium selenite.

EXTRACELLULAR REDUCTION OF SELENITE IONS BY STRAINS *B. SUBTILIS* B-7393 AND B-7392 DURING THE TRANSFORMATION OF Na2SeO3 WAS DETERMINED

Fig.. IV. TEM of strains B-7393 and B-7392 which have reduce selenite ions during Na2SeO3 transformation. Performed on a JEM-1400 electron microscope. 1. Control of strain B-7392 2. Formation of biogenic Nano-Se by strain B-7392; 3. Control of strain B-7393. 4.5. Formation of biogenic Nano-Se by strain B-7393.

Fig. III. The formation of Nano-Se by strain B-7679 with the addition of different

addition of differe doses of

EXTRACELLULAR SYNTHESIS OF NANO-SE BY B. CLAUSII WAS VISUALIZED

Fig.. V. TEM -Biosynthesis of selenium nanoparticles using Bacillus Clausii. 1-control of B. clausii; 2; 3. B. clausii synthesis of exogenous Nano-Se. Done on JEM-1400.

EFFICIENCY OF APPLICATION OF DRY SELENIUM-CONTAINING PROBIOTIC BASED ON STRAIN B-7679 FOR GROWING YOUNG QUAILS

Table 1. Feed consumption per 1 kg of body weight gain, increasing the survival rate of quails and average daily weight gain of their body *- P<0,05	Group (characteristics of feeding)	kg of body weight gain, kg	Preservation Livestock, %	(1-35 days), g
	Control, BD (basic diet)	$3,88 \pm 0,12$	90,0	5,55±0,21
	Received BD + 0.3 mg Se/kg in feed (0.3 ppm Se as Na2SeO3 supplement)	3,76 ± 0,19	93,3	5,79±0,18
	Quails received BD + strain B-7679 1.0 × 106 CFU per head/day 0.3 mg Se/kg in feed in the form of Na2SeO3 transformed into biogenic nanoselenium (0.3 ppm Se)	3,58 ± 0,16	95,0	6,00±0,23*